Thymocytes may persist and differentiate without any input from bone marrow progenitors
نویسندگان
چکیده
Thymus transplants can correct deficiencies of the thymus epithelium caused by the complete DiGeorge syndrome or FOXN1 mutations. However, thymus transplants were never used to correct T cell-intrinsic deficiencies because it is generally believed that thymocytes have short intrinsic lifespans. This notion is based on thymus transplantation experiments where it was shown that thymus-resident cells were rapidly replaced by progenitors originating in the bone marrow. In contrast, here we show that neonatal thymi transplanted into interleukin 7 receptor-deficient hosts harbor populations with extensive capacity to self-renew, and maintain continuous thymocyte generation and export. These thymus transplants reconstitute the full diversity of peripheral T cell repertoires one month after surgery, which is the earliest time point studied. Moreover, transplantation experiments performed across major histocompatibility barriers show that allogeneic transplanted thymi are not rejected, and allogeneic cells do not induce graft-versus-host disease; transplants induced partial or total protection to infection. These results challenge the current dogma that thymocytes cannot self-renew, and indicate a potential use of neonatal thymus transplants to correct T cell-intrinsic deficiencies. Finally, as found with mature T cells, they show that thymocyte survival is determined by the competition between incoming progenitors and resident cells.
منابع مشابه
Enforced expression of GATA-3 severely reduces human thymic cellularity.
Following bone marrow transplantation, patients often suffer from immune incompetence by reduced or late T cell development. Moreover, adult bone marrow stem cells have a lower capacity to generate T cells compared with fetal liver- and umbilical cord blood-derived progenitors. Therefore, enhancing thymic-dependent T cell generation might hold great therapeutic potential. GATA-3 is a transcript...
متن کاملThymus-autonomous T cell development in the absence of progenitor import
Thymus function is thought to depend on a steady supply of T cell progenitors from the bone marrow. The notion that the thymus lacks progenitors with self-renewal capacity is based on thymus transplantation experiments in which host-derived thymocytes replaced thymus-resident cells within 4 wk. Thymus grafting into T cell-deficient mice resulted in a wave of T cell export from the thymus, follo...
متن کاملAltered bone marrow lymphopoiesis and interleukin-6-dependent inhibition of thymocyte differentiation contribute to thymic atrophy during Trypanosoma cruzi infection
Thymic atrophy occurs during infection being associated with apoptosis of double positive (DP) and premature exit of DP and double negative (DN) thymocytes. We observed for the first time that a significant bone marrow aplasia and a decrease in common lymphoid progenitors (CLPs) preceded thymic alterations in mice infected with Trypanosoma cruzi. In addition, depletion of the DN2 stage was prev...
متن کاملCD34+CD38dim cells in the human thymus can differentiate into T, natural killer, and dendritic cells but are distinct from pluripotent stem cells.
Recently we reported that the human thymus contains a minute population of CD34+CD38dim cells that do not express the T-cell lineage markers CD2 and CD5. The phenotype of this population resembled that of CD34+CD38dim cells present in fetal liver, umbilical cord blood, and bone marrow known to be highly enriched for pluripotent hematopoietic stem cells. In this report we tested the hypothesis t...
متن کاملSelf-renewal of thymocytes in the absence of competitive precursor replenishment
Soon after transplantation of wild-type thymi into immunodeficient mice lacking functional T cell receptors, productive T cell development in the donor thymus ceases. This observation underlies one of the central dogmas of T cell biology: because thymocytes are seemingly short-lived, intrathymic T cell development depends on continuous import of lymphoid progenitors from the bone marrow. New wo...
متن کامل